午夜福利理论片在线观看,18videosex性欧美69,国产妇女馒头高清泬20P多,插我舔内射18免费视频

歡迎來(lái)到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時(shí)間:2021-11-30  |  點(diǎn)擊率:1630

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


国产免费无码一区二区视频| 丰满少妇猛烈进入A片K8经典| 邻居儿媳中文字幕| 无码人妻精品一区二区| 国产麻豆一区二区三区精品视频| 我的奶头被客人吸得又肿又红又痛| av无码久久久久久不卡网站| 免费在线观看成人电影| 少妇养生馆SPA私密精油按摩| 多P混交群体交乱嗯啊小说| 午夜精品久久久内射近拍高清| 成人在线电影| 国产99在线 | 欧美| 丰满人妻少妇久久久久久| 真人性囗交69视频| 国产乱码精品一区二区三区四川人| 欧美精品一区二区少妇免费A片| 亚洲色偷偷综合亚洲AV伊人| 无码视频一区二区三区| 精品AV无码国产一区二区| 欧美性生交XXXXX久久久| 艳妇荡女欲乱A片在线观看| 亚洲国产综合久久久无码色伦| 最近中文字幕高清字幕MV| 人人妻人人藻人人爽欧美一区| 天天爱天天做天天爽| 性色XXXXHD天美传媒| 国产亚洲色婷婷久久99精品| 无码人妻熟妇AV又粗又大| 无遮挡国产高潮视频免费观看| 少妇无码一区二区三区免费| 蜜芽跳转接口点击进入忘忧草| 小罗莉极品一线天在线| 日日麻批免费40分钟无码| 少妇撒尿W搡BBB搡WBBB搡| 人妻AV鲁丝一区二区三区蜜臀| 国产性猛交╳XXX乱大交| 国产一区二区在线视频| 中文AV人妻AV无码中文视频| 丰满大码的熟女在线视频| 我的邻居是BJ无删减漫画免费看|