午夜福利理论片在线观看,18videosex性欧美69,国产妇女馒头高清泬20P多,插我舔内射18免费视频

歡迎來(lái)到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時(shí)間:2021-11-30  |  點(diǎn)擊率:1630

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


三上悠亚上司の在线播放| 国产精品久久婷婷六月丁香| 亚洲AV无码乱码在线观看,不卡| 久久天天躁狠狠躁夜夜AV| 亚洲AV人人澡人人爽人人夜夜| 色欲AV永久无码精品无码蜜桃| 被C哭着爬走又被拉回来挺进H| 最新的美国ZOOM动物| FREE性中国熟女HD| 免费人成在线观看网站| 欧洲狂野RAPPER潮水| 国偷自产AV一区二区三区动漫| 久久AV无码AV高潮AV不卡| 欧美另类69xxxxx| 俄罗斯少妇性做爰片| 欧美午夜理伦三级在线观看| 欧美人与性动交Α欧美精品| 少妇无码吹潮久久精品AV| 吴北唐紫怡小说免费阅读| 精品人妻中文无码AV在线| 女人爽到高潮潮喷叫床69| 狂野欧美性猛交XXXX| 国产中年熟女高潮大集合| 新番里H肉3D动漫在线观看网站| 少妇高校长白结全文阅读| 你的棒棒可以桶桶我的下水道| 三上悠亚SSⅠN939无码播放| 特级毛片www免费版| 精品久久久久久综合日本| 东北少妇不带套对白第一次| 男人呻吟双腿大开男男H漫画在线| 精品无码AV一区二区三区| 国产精品久久久久久久久久免费| 精品视频无码一区二区三区| 亚洲中文字幕在线观看| 野外妓女脱裤子让老头玩| 亚洲AV无码国产精品色午友在线| 欧一欧二欧三乱码| 欧美与黑人午夜性猛交久久久| 玩弄朋友娇妻呻吟交换电影| 精品人妻AV无码一区二区三区|